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General
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@ Hydrogen storage
@ Nuclear fusion

@ Nanoelectronics, spintronics,
nanomagnetism
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Electric Field Effect in Atomically
Thin Carbon Films

K. S. Novoselov,” A. K. Geim,"™ S. V. Morozov,? D. Jiang,"
Y. Zhang," 5. V. Dubonos,® 1. V. Grigorieva,” A. A. Firsov*

We describe monocrystalline graphitic films, which are a few atoms thick but are
raneteles stable s smitert condlion, el s of rarwiotly igh

quality. The

e e o hands, and they extibl a strong anblpola
electric field effect such that electrons and holes in concentrations up to 10 per
square centimeter and with room-temperature mobilities of ~10,000 square
centimeters per volt-second can be induced by applying gate voltage.

The ability to control electronic properties of
a material by externally applied voltage is at
the heart of modem electronics. In many
cases, it s the electric field effect that allows
one 1o vary the carrier concentration in a
consequently,
change an electric current through it. As the

semiconductor device and,

Department of Physics, University of Manchester,
Manchester M13 97L, UK. “Insttute for Microelec.
onics Technology. 142432 Chemogolovks, Russa
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semiconductor industry is nearing the limits
of performance improvements for the current
technologies dominated by silicon, there is a
constant search for new, nontraditional mate-
sials whose properties can be controlled by
the electric field. The most notable recent
examples of such materials are organic
conductors (/) and carbon nanotubes (2). It
has long been tempting to extend the use of
the field effeet to metals [e.g., to develop all-
metallic transistors that could be scaled down
to much smaller sizes and would consume
less energy and operate at higher frequencies
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than tradi N\

However,
metal fily
sereened ¢
and bulk
large com
be induce
tend 10 b
coming d
eral nanometers; so far, this has proved to be

an insurmonntable chtacle to metallic elec-

@

grapnene sneet rotied up into nanomet
eylinders) (5-7). Planar ¢

been presumed not o exis
being unstable with respect
curved structures sueh as §
nanotubes (5-14).

Au contacts
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Hr -ty > al(R)b-(R; +6) + c.c.

a-i = ke *Mar(k)
H=—tY, . f(k)ak (k)b (k) + c.c.

H= —tk’ZT [ai(k)vbi(k)] [ f*(()k) f((:() } { i:ftg }
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Graphene is a true 2D-electron gas (2DEG) system with
pseudo-relativistic conduction electrons!
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General

Technology

Graphene is a true 2D-electron gas (2DEG) system with
pseudo-relativistic conduction electrons!

...why interesting for us?

@ Chemistry: graphene is a large polycylic aromatic
hydrocarbon

@ Surface Science: adsorption of atoms/molecules may
tremendously affect transport properties
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The need for understanding adsorption

H on Graphite (Graphene) vs metal substrates

@ Chemisorption is thermally activated'»?
Substantial lattice reconstruction upon sticking'»?
Diffusion of chemisorbed H atoms does not occur®
Preferential sticking®
Clustering of H atoms3#5
Dimer recombination®

[1] L. Jeloaica and V. Sidis, Chem. Phys. Lett. 300, 157 (1999) [2] X. Sha and B. Jackson, Surf. Sci. 496, 318 (2002)
[3] L. Hornekaer et al., Phys. Rev. Lett. 97, 186102 (2006) [4] A. Andree et al., Chem. Phys. Lett. 425, 99 (2006) [5]

L. Hornekaer et al., Chem. Phys. Lett. 446, 237 (2007) [6] L. Hornekaer et al., Phys. Rev. Lett. 96, 156104 (2006)
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I. Tight-binding 7 Hamiltonian (uncorrelated e~)

H~ H™ = ZT,,]-(t,,-a,T‘Tbj,T +* tj,bjﬁTa,-,T) + next — to — nn + etc...
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I. Tight-binding 7 Hamiltonian (uncorrelated e~)

H~ HTB = ZT,,]-(t,,-a,T,Tbj,T + tjjbjT,Tai,q—) + next — to — nn + etc...

11. Hubbard (partially correlated e )
H =~ HTB—f—ZI- U,‘nmn,"l <
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Theoretical tools

I. Tight-binding 7 Hamiltonian (uncorrelated e~)

H~ HTB = ZT,,]-(t,,-a,T,Tbj,T + tjjbjT,Tai,q—) + next — to — nn + etc...

I1l. Valence-Bond (partially correlated ™)

11. Hubbard (partially correlated e )

H= H™ + 3, Ui 10y | — Vg = A{$16263...oNOF 4}
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Theoretical tools

I. Tight-binding 7 Hamiltonian (uncorrelated e~)

H~ HTB = ZT,,/-(t,-,-a,T,Tbj,T + t,-,-bjtTa,-,T) + next — to — nn + etc...

I1l. Valence-Bond (partially correlated ™)

11. Hubbard (partially correlated e )

H= H™ + 3, Ui 10y | — Vg = A{$16263...oNOF 4}

IV. DFT calculations (fully’ correlated e~ ) and more..

@ Periodic, plane-wave based, spin-polarized calculations with vASP
@ PAW method, PBE functional
@ 5x5x1 unit cell,c=20 A (vacuum), 6x6x1 '-centered k mesh, E.,; = 500 eV
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|. Properties of bipartite lattices

Electron-hole symmetry

b/'—>—bi:>h—>—h Ny

if ¢; is eigenvalue and
¢l = aial +32; 8b] eigenvector

\

na+ ng — 2nx
n*
v 72
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|. Properties of bipartite lattices

HTB — ZTU(t,]a b+ t/,b ,8ir)

If ng > ng there exist (at least) nj = ny — ng "midgap states" with vanishing
components on B sites

v

{-?- '|(')T } [ g}:[g} with T ngxna( > ng)

— Ta = 0 has ng — ng solutions

o) &

v
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Il. Properties of bipartite lattices

HHo = 57 (tal b, + tibl &)+ U mien .

If U > 0, the ground-state at half-filling has

S =|na—ng|/2=n/2

E.H. Lieb, Phys. Rev. Lett. 62 (1989) 1201 a \

...basically, we can apply Hund'’s rule to previous result L
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Bipartite lattices: theorems at work
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Bipartite lattices: theorems at work

W
&

nag=ng—+1
S=1/2

patterned spin-density..
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nag=ng—+1 ng=ng—+2
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patterned spin-density.. .triplet ground-state
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Bipartite lattices: theorems at work

nag=ng—+1 ng=ng—+2 na = Np
patterned spin-density.. .triplet ground-state ‘open-shell singlet’
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[ll. Valence Bond picture

Modern, basic VB ansaiz

o
v=A ..oNON
{p102¢3...0NOg m} O%SO _ll. +.

A
N N §
Osm = Z CkOs M.k 005 ) (:H4
k TN
. % 0.01 0 01 1001
@ orbitals ¢; are (or turn out LA A LS
to be) localized on atoms "
@ spin-function is the best W= 52 0 A{61.610010, )
coupling for the given S ~ A{61.61007P} Z
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[ll. Valence Bond picture

Modern, basic VB ansatz

U = A{p1¢2¢3...60NOF 1} ﬁz #

A

o= ¢,
S.M Z k= S,M;k © @ C6HG
K
0.482 0.482
@ orbitals ¢; are (or turn out @ @
. 0.012 0.012 0.012
to be) localized on atoms

@ spin-function is the best 6 o )
coupling for the given S V=D Al b d20sdad50605 0.}

1
k=1 d
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[ll. Valence Bond picture

Modern, basic VB ansaiz

U = A{p10203...0NOY 1}
Kekule (1865)

SM_ZCKGSMK

@ orbitals ¢; are (or turn out - o
to be) localized on atoms Vo W4 wp?

@ spin-function is the best
coupling for the given S £
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@ Single atom adsorption
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@ The role of edges
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Single H

Adsorption PES

X. Sha and B. Jackson, Surf. Sci. 496, 318 (2002)
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Single H

Valence Bond: adsorption barrier

—
F PN N A
J—=11i]— L
0.4 7 : -
E +H
02p
0.0
>
d
I F +H
02F N -
g =
04
06F t
N R N TR Y L
C 1 2 3 4 5
] T A RN R [(':y_{'*/_/\/
1 2 BE 4 D ) <\7/ ‘
z/A .
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Single H

Substrate electronic structure

Graphene

0
(ee) /eV
+H

H-Graphene

S SR Y (RN AR I
A _® _@® e o 4

- - E-€, e
patterned spin- density : ;ﬁ’
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H atoms on graphenic substrates
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Single H

Substrate electronic structure

QD (
@ (

— — _ !
..patterned spin-density ﬁ.

Hydrogen & graphene
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Clustering of H atoms
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Clustering of H atoms

Dimers

3.00 |

= 200 — .
© Binding energies depend ~
: linearly on the site integrated
Y 1.00 magnetization (Mg)

0.00 Ll Lo

0.00 0.05 0.10 0.15
Mg,/ bg
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Clustering of H atoms

Dimers

3.00w|\\‘

908

S
"localization" energy

2.00

bind eV

W 100

L Ll Ll \
0.00 0.00 0.05 0.10 0.15 \/

Mg,/ bg
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Clustering of H atoms

Dimers

020 T L L L L ortho_dimer
01 5} single H { . .

= L ]

GJ - -

L 0.10F . /

g L ]

w L d para—dimer
0.05- & - i E
0.00 C m
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Clustering of H atoms

Dimers

307

5]
(10-10)
@ s

[1] L. Hornekaer, Z. Sljivancanin, W. Xu, R. Otero, E. Rauls, |. Stensgaard, E. Laegsgaard, B. Hammer and F.
Besenbacher. Phys. Rev. Lett. 96 156104 (2006)

[2] A. Andree, M. Le Lay, T. Zecho and J. Kupper, Chem. Phys. Lett. 425 99 (2006)
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Clustering of H atoms

3-atom clusters

Y

0.620 eV

w=1pp =p=2pp= p=3up
0.971 eV

0.820 eV
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Clustering of H atoms

3-atom clusters
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Clustering of H atoms

4-atom clusters
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Cluster models to graphene

Role of edges

@ Zzig-zag edges have
enhanced hydrogen affinity

@ geometric effects can be
investigated in small
graphenes

= DFT and Multi-Reference
Quasi-Degenerate PT on
CASSCF wavefunctions

Hydrogen & graphene
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Cluster models to graphene

Systems

HC! /

benzo[cd]pirenile

9090
HC! =

imbalanced ‘PAHS’

HC__~

perinaftenile / fenalene

7 -PAH

. dibenzo[def mno]crisene /
irene
P antrantrene

benzo[ghi]perilene coronene

balanced PAHs &
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Cluster models to graphene

Systems

HC__~

perinaftenile / fenalene

HC. /'

benzo[cd]pirenile
y

I
Fo L,

imbalanced ‘PAHS’

7 -PAH

pirene

e
At

benzo[ghi]perilene

balanced PAHs

dibenzo[def,mno]crisene /

antrantrene

|\\
906
(L

coronene
ﬁ.
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H atoms on graphenic substrates
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Cluster models to graphene

Balanced PAHs

Graphitic vs edge carbons

MRQDPT

0.8

06

E q/ev

0.4

0.2

0.0
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H atoms on graphenic substrates
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Cluster models to graphene

Adsorption paths

Balanced PAH

E/eV
E/eV

RQDPT

P /S R R
2
d(C-H) /A 72

dcfe@university of milan
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Cluster models to graphene

Spin-density

H + Balanced PAH
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Cluster models to graphene

Spin-density

Imbalanced PAH
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e Opening a bandgap
@ H superlattices
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H superlattices

Logic applications

The need for opening a gap

Graphene

Gate Gate
Source\- Drain - Source]
J

]
NA 300 nm Si0, N

Al,Oy

[ high resistivity Si |

N ? wonduction

V,
ns=606% I valenee
f v Y CNT-FET with ordinary and wrapped

around gates .
P. Avouris et al., Nat. Mat., 605, 2, (2007) ‘ﬁ.
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H superlattices

Logic applications

The need for opening a gap

(,.03) 3sumisnpuoyy

10
From bottom 1o top
_ 0% = F=0dio-1av
£
= Step=-02V
e L
w0 -
w0 L
e Ly P S A S I A M T A A A
-1.0 0.5 -0.0 -0.5 1.0 15 20

= I = I(Vyg, Vgs) for a 20 nm-wide GNR-FET
| — Vg characteristics of a CNT-FET .
M. Han et al., Phys. Rev. Lett. 98, 206805 (2007) ﬁ.
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H superlattices

Logic applications

The need for opening a gap

=
From boltom to top N

_ 0% FeDit- 1y o
5—- Step=-0.2V —%—T -

o L

w0

02 L

{1 L I U S A ST ST B 1 | S I

1.0 0.5 0.0 0.5 1.0 1.5 20
v,
| — Vg characteristics of a CNT-FET I = I(Vg, Vgs) GNR-FET
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H superlattices

Symmetry

Why graphene is gapless?

r-space k-space
. . . . G(k) = {g € Golgk =k + G}
Go = Den = G(K) = D3y, L
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H superlattices

Symmetry

Why graphene is gapless?

r-space

A = A5 o—kR |4
. . . . | k) 'Nex ReBK | R>
By — 1 e kR (B
. 1Bi) = 73— 2 Resr |Br)

(r|Ar) = ¢pz (r — Ra)

fork =K

o,

. . . . {|Ak) ,|Bx)} span the E” irrep of Dsp

GO = Deh ‘g‘
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H superlattices

Symmetry and bipartite lattices

For any bipartite lattice at half-filling, if the number of E irreps is odd at a special point,
there is a degeneracy at the Fermi level, i.e. Egap = 0

Use electron-hole symmetry a

L
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H superlattices

Designing semiconducting structures

@ Consider nxn graphene superlattices (i.e. G = Degp):
degeneracy is expected at I, K

@ Introduce pz vacancies while preserving point symmetry

@ Check whether it is possible to turn the number of E irreps
to be even both at I and at K

L
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H superlattices

Counting the number of E irreps

T A E

03 212 2P

T3 | 2(8° +2n+1) 2(3n + 2n)

2; | 2(8n° +4n+2) 2(3r° + 4n+ 1)
Kn A E

05 2n° 27

13 2n(3n+ 2) 2n(3n+2) + 1
25 | 2Bn° +4n+1) | 2(3r° +4n+1)+1

K: 2A+2E K: E

=n=383m+1,3m+2, meN
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H superlattices

(14,0)-honeycomb

b Ph by
: Bhis
40
20
3
-~ 0
N
-20
40 &
e
b P
-40 -20 0 20 40
x A %
©o0o
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H superlattices

Tight-binding DFT
2.0 ————————] 12
1.0+
151 [
[ 0.8
> L >
() [ @ [
4 1.0 = 06F
g &
w [ > I
r @ 04+
0.5j [ *
L 02+
i PR
09 - 0.0 Lo koreseimxsonde Lo L
.00 0.30 Y0 "5 10 15 20 25 30
1/n n

egap(K) ~ 2t/1.683/n
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H superlattices

..not only: as degeneracy may still occur at € # ¢¢
new Dirac points are expected

graphene (4x4) (4,0)-honeycomb
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H superlattices

..not only: as degeneracy may still occur at € # ¢¢
new Dirac points are expected

1.0~

0.8 -

0.4r- -
o \N- ]

T T R R N A S
0'(900 0.10 0.20 0.30
1/n
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Summary

Summary

@ Thermodynamically and kinetically favoured H clusters
minimize sublattice imbalance

@ Adsorption on magnetic C-substrates is roughly governed
by spin density only
@ Symmetry breaking is not necessary to open a gap

@ New Dirac cones appears right close to the edges of the
gap region
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